Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

He-Jiao Hu, Cui-Rong Sun, Hong Zhang and Yuan-Jiang Pan*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: cheyjpan@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.084$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(Dicyclopropylmethylamino)-4,5-dihydro-1,3-oxazolium dihydrogenphosphate

The title compound, $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, consists of a rilmenidine cation and a phosphate anion. In the solid state, the inversion-related phosphate anions are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a chain along the a axis. The cations are connected to the chain via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

N -(Dicyclopropylmethyl)-4,5-dihydro-2-oxazolamine (or rilmenidine) exhibits good antihypertensive activity (Malen et al., 1978). We report here the structure of rilmenidine phosphate, (I).

(I)

Compound (I) (Fig. 1) contains a rilmenidine cation and a phosphate anion. In the oxazole ring, the $\mathrm{N} 1=\mathrm{C} 2$ [1.3079 (19) \AA] distance is longer than the corresponding distance $[1.264$ (3) \AA] reported by Jiang et al. (2001); on the other hand, the $\mathrm{C} 2-\mathrm{N} 6$ [1.3055 (19) \AA] and $\mathrm{C} 2-\mathrm{O} 3$ [1.3230 (17) Å] distances are shorter [1.367 (2) Å; Jiang et al., 2001]. These changes in bond distance suggest electron delocalization involving atoms $\mathrm{N} 1, \mathrm{C} 2, \mathrm{O} 3$ and N 6 . The oxazole ring adopts a half-chair conformation. The geometry of the two cyclopropyl groups agrees with that reported by Gerhard et al. (2001). The cyclopropyl substituent often affects the activity of the groups attached to it (Johnson et al., 2000).

In the crystal structure, inversion-related phosphate anions are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a chain along the a axis (Fig. 2). The cations are connected to the chain via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). A view of the molecular packing down the a axis is shown in Fig. 3.

Experimental

Rilmenidine was synthesized according to the method of Malen et al. (1978). An ethanol solution (5 ml) containing rilmenidine (0.018 g , 0.1 mmol) was mixed with an equimolar amount of phosphoric acid and the mixture was placed in a conical flask. After several days, white single crystals were obtained by slow evaporation of ethanol at room temperature.

Received 4 January 2005 Accepted 17 January 2005 Online 29 January 2005

Figure 1
The structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atom on C 4 is obscured.

Figure 2

A view of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded chain. Only H atoms involved in the hydrogen bonds (dashed lines) are shown.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{P}^{-}$
$M_{r}=278.24$
Triclinic, $P \overline{1}$
$a=8.3212(8) \AA$
$b=8.9609(9) \AA$
$c=9.8813(10) \AA$
$\alpha=97.070(2)^{\circ}$
$\beta=101.475(2)^{\circ}$
$\gamma=108.355(2)^{\circ}$
$V=671.54(12) \AA^{\circ}$

$$
Z=2
$$

$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2726 reflections
$\theta=2.4-28.6^{\circ}$
$\theta=2.4-28.6^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, white
$0.48 \times 0.48 \times 0.46 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
3425 measured reflections
2342 independent reflections
2120 reflections with $I>2 \sigma(I)$

Figure 3
Packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.084$
$S=1.06$
2342 reflections
180 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0421 P)^{2}\right. \\
& +0.1859 P] \\
& \begin{array}{c}
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{array} \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.25 \text { e }^{-3} \\
& \text { Extinction correction: SHELXTL97 } \\
& \text { Extinction coefficient: } 0.041 \text { (4) } \\
& \text { Exinction coefficient:0.041 }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

P-O1	$1.5043(11)$	$\mathrm{O} 3-\mathrm{C} 4$	$1.4679(18)$
$\mathrm{P}-\mathrm{O} 2$	$1.5053(11)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.3079(19)$
$\mathrm{P}-\mathrm{O} 5$	$1.5599(13)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.457(2)$
$\mathrm{P}-\mathrm{O} 4$	$1.5637(13)$	$\mathrm{N} 6-\mathrm{C} 2$	$1.3055(19)$
$\mathrm{O} 3-\mathrm{C} 2$	$1.3230(17)$	$\mathrm{N} 6-\mathrm{C} 7$	$1.4755(19)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 3$	$4.99(19)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-14.60(18)$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2-\mathrm{N} 1$	$7.60(18)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$17.88(16)$
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	$-16.29(17)$		

Table 2
Hydrogen-bonding geometry $\left(\mathrm{A}^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N \cdots O1	$0.85(2)$	$1.87(2)$	$2.724(2)$	$175(2)$
N6-H6N \cdots O2	$0.85(2)$	$1.92(2)$	$2.759(2)$	$173(2)$
O4-H4O \cdots O $^{\mathrm{i}}$	$0.81(1)$	$1.80(1)$	$2.608(2)$	$175(2)$
${\text { O5-H5O } \cdots 1^{\mathrm{ii}}}^{2}$	$0.82(2)$	$1.77(2)$	$2.584(2)$	$175(2)$

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $2-x, 1-y,-z$.
H atoms attached to the hydroxy O and amine N atoms were located in a difference Fourier map and refined isotropically; the $\mathrm{O} 4-\mathrm{H} 4 \mathrm{O}$ distance was restrained to 0.81 (1) \AA. The remaining H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97$ and $0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20375036) and the Natural Science Foundation of Zhenjiang Province (grant No. RC0042).

References

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Gerhard, M., Stepan, S., Prince, X. \& Yitzhak, A. (2001). Organometallics, 20, 4607-4615.
Johnson, J., Kim, S.-H., Bifano, M., Dimarco, J., Fairchild, C., Gougoutas, J., Lee, F., Long, B., Tokarshi, J. \& Vite, G. (2000). Org. Lett. 2, 15371540.

Malen, C., Desnos, M., Laubie, M. \& Poignant, J. C. (1978). US Patent No. 4 102890.

Jiang, M.-L., Dalgarno, S., Kilner, C. A., Halcrow, M. A. \& Kee, T. P. (2001). Polyhedron, 20, 2151-2162.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

